A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices
نویسندگان
چکیده
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the "coffee ring effect". As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
منابع مشابه
Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
Printing techniques have been extensively used in the fabrication of organic electronic devices, such as light-emitting diodes and display backplanes. These techniques, in particular inkjet printing, are being employed for the localized dispensing of solutions containing biological molecules and cells, leading to the fabrication of bio-functional microarrays and biosensors. Here, we report the ...
متن کاملGraphene-Based Conducting Inks for Direct Inkjet Printing of Flexible Conductive Patterns and Their Applications in Electric Circuits and Chemical Sensors
A series of inkjet printing processes have been studied using graphene-based inks. Under optimized conditions, using water-soluble single-layered graphene oxide (GO) and few-layered graphene oxide (FGO), various high image quality patterns could be printed on diverse flexible substrates, including paper, poly(ethylene terephthalate) (PET) and polyimide (PI), with a simple and low-cost inkjet pr...
متن کاملPerformance comparison of inkjet and thermal transfer printed passive ultra-high-frequency radio-frequency identification tags
We compare the maximum read range of passive ultra high frequency (UHF) radio frequency identification (RFID) tags that have been produced using different metal printing techniques, specifically inkjet printing and thermal transfer printing. We used the same substrate (THERMLfilm), antenna designs, and electronic circuitry in our comparison so as to isolate the effect of the metal printing. Due...
متن کاملPerformance Comparison of Inkjet and Thermal Transfer Printed Passive UHF RFID Tags
We compare the maximum read range of passive ultra high frequency (UHF) radio frequency identification (RFID) tags that have been produced using different metal printing techniques, specifically inkjet printing and thermal transfer printing. We used the same substrate (THERMLfilm), antenna designs, and electronic circuitry in our comparison so as to isolate the effect of the metal printing. Due...
متن کاملTe 5 layer used as solid electrolyte in Conductive - Bridge memory devices fabricated on flexible substrate
This paper shows that the well-know chalcogenide Ge2Sb2Te5 (GST) in its amorphous state may be advantageously used as solid electrolyte material to fabricate Conductive-Bridge Random Access Memory (CBRAM) devices. GST layer was sputtered on preliminary inkjet-printed silver lines acting as active electrode on either silicon or plastic substrates. Whatever the substrate, the resistance switching...
متن کامل